Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
A fractional extension of the integrable Toda lattice with decaying data on the line is obtained. Completeness of squared eigenfunctions of a linear discrete real tridiagonal eigenvalue problem is derived. This completeness relation allows nonlinear evolution equations expressed in terms of operators to be written in terms of underlying squared eigenfunctions and is related to a discretization of the continuous Schrödinger equation. The methods are discrete counterparts of continuous ones recently used to find fractional integrable extensions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations. Inverse scattering transform (IST) methods are used to linearize and find explicit soliton solutions to the integrable fractional Toda (fToda) lattice equation. The methodology can also be used to find and solve fractional extensions of a Toda lattice hierarchy.more » « lessFree, publicly-accessible full text available May 1, 2026
-
A discussion of three-wave interaction systems with rapidly decaying data is provided. Included are the classical and two nonlocal three-wave interaction systems. These three-wave equations are formulated from underlying compatible linear systems and are connected to a third order linear scattering problem. The inverse scattering transform (IST) is carried out in detail for all these three-wave interaction equations. This entails obtaining and analyzing the direct scattering problem, discrete eigenvalues, symmetries, the inverse scattering problem via Riemann--Hilbert methods, minimal scattering data, and time dependence. In addition, soliton solutions illustrating energy sharing mechanisms are also discussed. A crucial step in the analysis is the use of adjoint eigenfunctions which connects the third order scattering problem to key eigenfunctions that are analytic in the upper/lower half planes. The general compatible nonlinear wave system and its classical and nonlocal three-wave reductions are asymptotic limits of physically significant nonlinear equations, including water/gravity waves with surface tension.more » « less
-
A unified method for analyzing the dynamics and topological structure associated with a class of Floquet topological insulators is presented. The method is applied to a system that describes the propagation of electromagnetic waves through the bulk of a two-dimensional lattice that is helically driven in the direction of propagation. Tight-binding approximations are employed to derive reduced dynamical systems. Further asymptotic approximations, valid in the high-frequency driving regime, yield a time-averaged system which governs the leading order behavior of the wave. From this follows an analytic calculation of the Berry connection, curvature, and Chern number via analyzing the local behavior of the eigenfunctions near the critical points of the spectrum. Examples include honeycomb, Lieb, kagome, and 1/5-depleted lattices. In the nonlinear regime, novel equations governing slowly varying wave envelopes are derived. For the honeycomb lattice, numerical simulations show that for relatively small nonlinear effects a striking spiral pattern occurs; as nonlinearity increases, localized structures emerge, and for somewhat higher nonlinearity the waves appear to collapsemore » « less
-
Three wave resonant triad interactions in two space and one time dimensions form a well-known system of first-order quadratically nonlinear evolution equations that arise in many areas of physics. In deep water waves, they were first derived by Simmons in 1969 and later shown to be exactly solvable by Ablowitz & Haberman in 1975. Specifically, integrability was established by introducing a system of six wave interactions whose symmetry reduction leads to the well-known three wave equations. Here, it is shown that the six wave interaction and classical three wave equations satisfying triad resonance conditions in finite-depth gravity waves can be derived from the non-local integro-differential formulation of the free surface gravity wave equation with surface tension. These quadratically nonlinear six wave interaction equations and their reductions to the classical and non-local complex as well as real reverse space–time three wave interaction equations are integrable. Limits to infinite and shallow water depth are also discussed.more » « less
-
Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion.more » « less
An official website of the United States government
